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Block Runge-Kutta Methods for the 
Numerical Integration of Initial Value Problems 

in Ordinary Differential Equations 
Part I. The Nonstiff Case 

By J. R. Cash 

Abstract. Block Runge-Kutta formulae suitable for the approximate numerical integration of 
initial value problems for first order systems of ordinary differential equations are derived. 
Considered in detail are the problems of varying both order and stepsize automatically. This 
leads to a class of variable order block explicit Runge-Kutta formulae for the integration of 
nonstiff problems and a class of variable order block implicit formulae suitable for stiff 
problems. The central idea is similar to one due to C. W. Gear in developing Runge-Kutta 
starters for linear multistep methods. Some numerical results are given to illustrate the 
algorithms developed for both the stiff and nonstiff cases and comparisons with standard 
Runge-Kutta methods are made. 

1. Introduction. In the first part of this paper we will be concerned with the 
approximate numerical integration of the nonstiff initial value problem 

(11) ddy -f(X, y), y(x0) =Yo,Y E RU dx 

In [1], Bond presented a family of block cyclic schemes suitable for the numerical 
integration of (1.1). The approach developed by Bond can be regarded as a cyclic 
approach [6], a deferred correction approach [9], a linear multistep method with an 
off-step point [2], [3], [12], [16] or a block approach [19], [22], [28]. However, a rather 
more fruitful interpretation is to regard these formulae as explicit Runge-Kutta 
methods, and the purpose of this paper is to extend Bond's formulae in a Runge-Kutta 
framework using Butcher's analysis. 

Our aim will be to derive block formulae of order p which integrate p steps 
forward and which contain built-in local error estimates at each step. An alternative 
way of looking at this is to regard our formulae as being pth order explicit 
Runge-Kutta methods integrating forward over a single step H _ ph and yielding 
O(H/p)P ' accurate solutions at p - 1 equally spaced internal nodes. This problem 
has been investigated by Iserles [17] for fully implicit Runge-Kutta formulae, and he 
develops what he calls B and E classes of formulae. The main difference between 
Iserles' approach and the approach we consider is firstly that we will only be 
concerned with explicit and diagonally implicit Runge-Kutta formulae, and secondly 
our formulae will be such that an estimate of the local truncation error is available at 
all internal nodes. Block explicit Runge-Kutta formulae have also been considered 
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by Rosser [19] and by Sarafyan [20], [21]. However, the formulae which they present 
have lower orders of accuracy at internal points of the block than at the end of the 
block. In contrast to this, our formulae will be designed so that O(hP+') accurate 
approximations are obtained at all nodes, and we will explain later why we make 
this restriction. Finally we mention that the central idea in this paper is very similar 
to one due to Gear [11]. In [11] Runge-Kutta methods are proposed that yield 
O(hP+ 1) accurate approximations to hsy(s)(x ) for s 1,2,...,p. These formulae 
are not used to carry out the integration but instead generate the additional 
information required to start linear multistep methods at high order. However, many 
of the ideas given in [11] carry over to our approach, and the present paper should 
be regarded as complementary to the paper by Gear. 

One of the main reasons for considering the block formulae introduced in this 
paper is that they allow us to change order easily and, perhaps more importantly, 
they allow us to choose the best order (' 4) to use when starting. In an extensive 
survey by Hull et al. [14], [15] it was found, for the test problems considered, that a 
fourth order Runge-Kutta formula performs well when function evaluations are 
simple and the imposed tolerance is not very stringent. For very strict tolerances an 
eighth order formula due to Shanks performed very well, whereas the performance 
of the fourth order Runge-Kutta formula was poor in this case. These results 
highlight the need for us to be able to derive a variable step-variable order (VSVO) 
Runge-Kutta algorithm if we are to be able to maintain efficiency over a wide range 
of tolerances. Our experience on stiff and nonstiff problems indicates that, while in 
the stiff case it is vital to be able to change order, in the nonstiff case it is often more 
important to be able to select the correct order initially and to keep this order fixed. 
The algorithm which we will describe attempts to choose the 'optimal' order initially 
and then monitors the possibility of changing this order as the integration proceeds. 
The VSVO algorithms which we derive in this paper have been implemented on 
some test problems, and the results obtained indicate the superiority of the VSVO 
approach over conventional fixed order Runge-Kutta formulae. 

In the first part of this paper we will derive some explicit formulae for the 
numerical integration of nonstiff problems and in the second part we will derive 
diagonally implicit Runge-Kutta (DIRK) formulae suitable for the integration of 
stiff systems. 

2. Some Particular Formulae. All of the integration formulae which we consider in 
this paper have associated with them a Butcher matrix of the form 

cl all a12 ... alq 

C2 a21 a22 a2q 

(2.1) * 

cq aql aq2 ... a 

b1 b2 ... bq 

We have to modify this notation slightly to describe fully our block formulae, and 
we will explain these modifications, when they are needed, later in this section. We 
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first derive a formula of order 2. Butcher has shown that (2.1) has order 2 if 
q q 

(2.2a) b 1 ~bicj 
i=l1 i=l 

and furthermore the principal term in the local truncation error of this formula is 

(2.2b) PLTE [ ( I - 3 [ bjC2) {f2} + (1 -6:biaiijcj ){22}2 

where the terms involving f are the usual elementary differentials. Our formula 
integrates forward over a step 2h and so, in order to be able to use Butcher's 
analysis, we need to 'normalize' this formula to a step h by dividing all elements of 
its Butcher matrix by a factor of 2. A normalized 3-stage formula which generalizes 
the corresponding formula given in [11] is 

0 0 
(2.3) 1/2 1/2 0 

0/2 a/2 0/2 - a/2 0 

b1/2 b2/2 1 - bj/2 - b2/2 

Two strategies for choosing the free parameters could be 
(1) To improve the computational efficiency of our formulae and/or 
(2) To improve the stability properties. 

We will give some consideration to aim (2) but mainly in this paper we will be 
concerned with (1). 

We start off our investigation by considering a more or less obvious approach to 
the problem of satisfying requirement (1). As we shall see, however, this approach 
yields a rather inefficient formula, and this helps to highlight a problem associated 
with many existing block formulae. A second order formula requiring only two 
function evaluations per block can be obtained by taking 0 = a 0 O and is given by 

(2.4) k = f(X, Yn), k2 =f(xn+1, ylY + hkl), 

n(+ - = + hk,1, Y =y2 Yn + h(k, + k2), 

yn2 IYn + h 
(k, + k2), Y2) = Yn + 2hk2. 

This formula produces second order approximations at both xn+1 and xn+2 and an 
estimate of the local truncation error in yn,l) is y(2 - yn(l) for j 1, 2. If, however, 
we examine the principal local truncation errors associated with the second order 
solutions y(2, and yn(2) we find that for y(2), 

(2.5a) PLTE + { f}] 

whereas for yn(2 

(2.5b) PLTE = 6[{f2} + {2tff}2 
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Of course the magnitude of the PLTE in any given situation depends very much on 
the function being integrated since, in some cases, there may be cancellation 
amongst the terms appearing in (2.5a) or (2.5b). However, since the constants 
multiplying the elementary differentials in (2.5b) are larger than those appearing in 
(2.5a), we would expect (2.5a) to be the more accurate formula in general. (For 
simple problems where f(x, y) = ax + by + c, with a, b and c constants, the PLTE 
associated with (2.5b) is eight times that associated with (2.5a).) This expectation has 
been confirmed by practical experience. Furthermore the accuracy obtained with 

Y,)2 is exactly that which could have been obtained using a conventional second 
order Runge-Kutta formula with step 2 h, and so there is not a great deal of 
advantage in using this block formula. Thus, when dealing with block formulae, it is 
vitally important to examine the magnitude of the terms appearing in the PLTE as well 
as the order of the formula. Thus it is not valid to compare two block formulae of the 
same order merely by counting the number of stages. Indeed, we have programmed 
(2.4) and found it to be generally less efficient than (2.9) even though the latter 
formula requires one more function evaluation per step. 

To overcome this problem we consider an alternative approach which demands an 
"equi-distribution" of errors in the block scheme. In order to mirror the behavior of 
conventional single step formulae we construct our block scheme so that if the PLTE 
in yn(2,1 is of the form h34 +0(h4), then the PLTE in yn(2) is 2h3( + 0(h4). 

The main reasons for adopting this particular approach are as follows: 
(1) By adopting the equi-distribution of error (EDE) approach we have a theoreti- 

cal reason for expecting our formulae to outperform standard Runge-Kutta for- 
mulae. The EDE criterion attempts to ensure that for a smooth problem the local 
error committed in integrating from xn+i to xn+i+1 is the same for all i E [0, p - 1], 
and this is roughly the behavior of standard Runge-Kutta formula used with fixed h. 
Thus, if our block formulae can obtain 0(hP+ 1) approximations at p grid points 
using less function evaluations than is required by a pth order R-K formula to 
perform the! same task, we would expect our block formulae to be superior. The 
results of Section 4 indicate that block formulae developed using this criterion are 
generally more efficient than standard R-K formulae. 

(2) By demanding 0(hP+l) accuracy at internal points we can obtain 0(hP+l) 
solutions at "off-step" points by interpolation. This means that we do not have to 
choose h so that we "hit" output points, and this offers a significant saving when 
output is required at many points. 

(3) At each point in the block we have available a very cheap estimate of the local 
truncation error in the solution of order p - 1. By basing our step control on 
estimates of the error computed at a number of points rather than just one point (see 
Section 3) we can hope to reduce the likelihood of serious underestimation of the 
error and hence make the approach more reliable. The results presented in Section 4 
do indicate that the block schemes are more reliable than the standard Runge-Kutta 
formulae. 

(4) After considerable numerical experimentation, see particularly [1], it was found 
that the approach we have adopted gave the best numerical results out of the many 
possibilities tested. An additional advantage is 
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(5) By using the analysis given in [I I] we can compute an estimate of the stepsize 
to use after a rejected block. 

Thus, if we reconsider formula (2.3), we have the following: 
To compute yn+ : 

(2.6a) 0 0 PLTE - h 
1 

To computeYn(+2: 

0 0 
(2.6b) 1 1 0, PLTE = h2{f}. 

1 1 

To compute y(+1: 

0 0 h3 
1 1 0, PLTE 6-- [-{f2} + 

2 2 

To compute yn+2: use formula (2.3), where for order 2 and for equi-distribution of 
errors we require 

b2/4 + 0/2(1 - b1/2 - b2/2) = 1/2, 
1 - 3[b2/8 + 02/4(1 - b1/2 - b2/2)] = -1/8, 

1 - 6[(l - b1/2 - b2/2)(0/4 - a/4)] = 1/4. 

One solution to these equations is 0 = 2, a = 0, b1 = 2, b2 = 1, b3 = 2 giving the 
second order formula 

To compute yn+2: 

0 0 

(2.6d) ~1 1 0 h3 
(2.6d) 2 0' PLTE= 

_ 
[- {f2} + {2f}2], 

2 1 2 

The finally accepted second order solutions at n + 1 and n + 2 are yn(2, yn(2 and 
the quantities yn(2) - yn(Q, j = 1, 2, serve as an estimate of the local truncation error 
in yn(+. Applying this block formula to the scalar test equation y' = Ay, we obtain 

Yn+2/Yn = I + 2q + 2q + q q = hA, 
and it can be shown that the interval of absolute stability of this formula is 
approximately (- 1.5, 0). This block formula does have some computational ad- 
vantages over conventional Runge-Kutta formulae, and we will defer a discussion of 
these until Section 3. 

As an alternative we could adopt strategy (2) and choose the coefficients b2, a and 
0 so as to improve the stability properties of our formula. Such formulae are only of 
limited value-specifically formulae with increased real stability regions can be of 
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use in the numerical solution of parabolic partial differential equations, while 
formulae with increased imaginary stability regions are used in the integration of 
hyperbolic p.d.e.s. The price which we pay is that we lose the equi-distribution of 
errors property but the gain is a considerable increase in the stability intervals of our 
formulae. Applying (2.3) to the scalar test equation y' = Ay and putting q = hX, we 
obtain 

(2.7) Yn+2 = 1 + 2q + 2q2 + 2(0- a)( I b?2 )q3. Yn 2 2, 

The problem of choosing the coefficients of q3 to give an extended real interval of 
absolute stability has been investigated by Riha [18]. From Riha's analysis it follows 
that if we choose 

(2.8) 2( -a)( 2 1/2, 

then the interval of absolute stability of our block formula is (-3.15, 0). We now 
introduce a measure. 

I interval of absolute stability I * number of steps in block 
MS number of function evaluations 

This measure is similar to the scaled stability intervals considered by Watts [27] and 
is a fair way of comparing the stability properties of two different formulae since in 
effect it measures "the amount of stability" per function evaluation. Thus Ms = 2.1 
for (2.8) compared with Ms= 1 for a conventional second order Runge-Kutta 
formula. In view of this it is worthwhile to introduce extra function evaluations 
when integrating problems which are most efficiently integrated using formulae with 
large intervals of absolute stability. 

A final alternative is to choose our free coefficients so that the intercept of the 
region of absolute stability with the imaginary axis is maximized. An investigation of 
this problem has been carried out by van der Houwen [26] but the analysis is not yet 
as complete as that given by Riha for the real case. Formulae with an extended 
imaginary stability interval are important in the method of lines solution of 
hyperbolic partial differential equations. The resulting hyperbolic system is normally 
very large, its eigenvalue spectrum lies on or close to the imaginary axis and this 
spectrum occupies a large section of the imaginary axis. Using an elementary 
argument it can be shown that, in order to maximize the imaginary interval of 
absolute stability, we need to take 

(-(x)(l_b, b)= 

and for this choice the imaginary interval of absolute stability is (0, 2i). 
We conclude this section by listing some block integration formulae of order 1-4. 

We will list formulae with improved stability properties of order 2 only and leave the 
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derivation of higher order formulae as an area for future research. In what follows 
the weights for solutions at internal points in the block are given under the dotted 
lines. For example the third order formula is 

?1yb= h{Iki ?3 Yn+ I -Yn =h(4 k1 4 k3 t 

Yn+2 -Yn =t32k + 32 3 +32 4 + 32k} 

Yn+3Y - =y h {( + ki k3 ?+ k4 + k6 

All formulae are obtained using the equi-distribution of error condition and the 
formulae are given using the standard R-K formalism for block methods with the 
coefficients of the Butcher arrays for a pth order formula given for the stepsize 
H =-ph. We note that the 'M, factor' is better than conventional Runge-Kutta 
formulae for orders 2 and 3 but is worse for order 4. 

First Order Formula: 

Yn+I - Yn =hfn 

Second Order Formulae: 

Equi-distribution of error 

0 0 

1/2 1/2 0 

1/4 1/4 Ms= 1.03 
1 0 1 0 

1/4 1/2 1/4 

Maximum Real Stability 

0 0 

1/2 1/2 0 

(2.9) 1/4 1/4 Ms= 2.1 
1 1/2 1/2 0 

1/2 0 1/2 

Maximum Imaginary Stability 

0 0 

1/2 1/2 0 

1/4 1/4 Imaginary Stability 
1 0 1 0 -Interval (0, 2i) 

1/2 0 1/2 
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Third Order Formula: 

0 0 
1/3 1/3 0 
2/9 4/27 2/27 0 

1/12 0 1/4 M, 1.05 
2/3 0 2/3 0 0 

(2.10) 4/9 8/81 -8/81 10/27 2/27 0 

9/96 0 21/96 7/96 27/96 
1 al a2 a3 a4 a5 0 

35 039 23 013 
504 112 48 126 

al = 0.9173076923, a2 = -2.807692308, a3 = 0.3923076923, 
a4= 1.073076923, a5= 1.425. 

The second order formula used to give an error estimate at n + 3 is identical with 
the above formula for the first 5 stages, and the 6th stage is given by 

1 al a2 a3 a4 a5 0 

43/120 1/2 -41/80 109/240 1/10 1/10 

Fourth Order Formula: 

0 0 
1/4 1/4 0 
1/6 1/9 1/18 0 
1/8 3/32 1/32 0 0 
1/4 -1/8 -1/8 0 1/2 0 

1/24 0 0 1/6 1/24 

1/3 a61 a62 a63 a64 a65 0 M, 1/3 
1/2 a7l a72 a73 a74 a75 a76 0 
1/2 0 1/2 0 0 0 0 0 0 
1/3 2/27 -2/27 5/18 0 0 0 0 1/18 0 

(2.11) 7/192 0 0 1/5 -1/24 81/320 5/96 0 0 

3/4 a1lo, a10,2 a10,3 0 0 0 0 a10,4 a10,5 0 
3/4 all, a 12 a,113 a,114 a11,5 0 0 a,16 a,17 0 0 

b' 0 b3 b4 b5 0 0 b6 b7 b8 b9 
I a12,1 a12,2 a12,3 a12,4 a12,5 0 0 a126 a12,7 0 a12,8 

bi 0 b3 b4 b5 0 0 b6 b7 0 b8 b9 

with 

a61 -0.006790123455, a62 -1/18, a63 = 1/20, a64= 0.2024691358, 
a65 = 0.14320987655, a71 = -0.077, a72 = 0 .05, a73= -0.243, a74= 0.856, 
a75 = -0.896, a76= 0.81, a101 = 0.6879807692, a102 = -2.105769231, 
a103 = 0.2942307692, a104 = 0.804807692, a105 = 1.06875, 
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al ll = 1.013599649, all2 = -2.373563736, 
all3 = 2.101305181, all4 = -1.808316282 
al15 = 0.03836597482, al1l6 = 0.8880102464, 
all7 = 0.8905989659, bi = -0.1013997396, 

b3 = -1.316476004, b4 = 1.4416666667, 
b5 = -0.0390625000, b6 = 0.2234700521, 
b7 = 0.4508789062, b8 = 1.8, b9 = -1.527232143, 

a 12J = -2.42247142, a122 = 2.9828410875, 
a 123 = -1.1939428, a12,4 = 4.073007497, 
a 125 1.111468958, a2,6 = 0.5712931975, 
a 127 =-4.733490737, a 128 = 0.6112942211, 

b= 0.0003635169, b3 = 0.3368658833, 

b4= 0.0506860373, b5 = 0.1566864719, 

b6= 0.493281834, b7 = -0.3737884895, 

b8= 0.2384047462, b9 = 0.0975. 

The formula used to obtain a third order solution at n + 4 is the same as above with 
the bi, 1 < i s 9, replaced by b where 

b = 0.001663007867, b3 = 0.3637090175, 

b4 = 0.02844392849, b5 = 0.1594404918, 

b6 = 0.4957601898, b7 = -0.3853166355, 

b8 = 0.2391, bg = 0.0972. 

Note that several of these coefficients are rather large. However, paradoxically, the 
numerous formulae which have been obtained with smaller coefficients have been 
found to be much less reliable than those given above. We see from this Section that 
formulae (2.9), (2.10), (2.11) achieve order 2, 3, 4, respectively, but require only 1', 

2, 3 function evaluations per step. This is better than conventional explicit Runge- 
Kutta formulae of order p which require p function evaluations per step for p < 4. 

3. Computational Aspects. All of the formulae given in the previous section are 
such that a pth order formula integrates forward in a block of p steps. The way in 
which we have implemented our formulae allows us to change order only after p 
integration steps have been completed, although it should be possible to modify 
Gear's approach to enable us to choose a new step if a block is rejected. As we will 
show in this section, the block approach does have three major computational 
advantages in that the algorithm used to choose h is likely to be very reliable, our 
block approach allows us to change order and also to compute solutions at 
"off-step" points in a simple manner. 

The first problem considered is that of error estimation. As is well known, the 
local truncation error associated with high order Runge-Kutta formulae is generally 
so complicated that the problem of error estimation has proved to be a difficult one 
to overcome. Probably the most successful solution of this problem to date has been 
embedding, which was developed in a series of papers by Fehlberg [7], [8]. This is the 
approach which we will adopt in his paper. Note that the Fehlberg approach is 
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applicable since each block formula of order p has embedded formulas of order 1, 
2,...,p - 1. In fact, using an interpolation formula, we could obtain embedded 
error estimates at any point in the subinterval and not only at mesh points. 

Denoting the true solution of our differential equation at xn by y(x) and the 
numerical solution obtained at xn+l using a pth order Runge-Kutta formula by 

Yn+l,p,we have 

(3.1) Y(Xn+1) -yn+ p = hP+lop + O(hP+2), 

where op is the principal error function associated with the pth order formula and 
where we have assumed that Yn is exact. Associated with the pth order formula 
there is an embedded formula of order p - 1 which yields a solution yn + p1 I at 
xn+l satisfying 

(3.2) Y(Xn+1) -Yn+l,p- = hP4p_1 + O(hP+ ). 

Subtracting these two relations and assuming that the O(hP+2), hP lfop and O(hP'l) 
terms are negligible compared with the other terms, we have 

(3.3) hPop_- I-yn+ 1, p-Yn+ l,P I- 

Thus the error in the pth order solution has a principal term 

hP+ l)p = h (Yn+ I ,p-Yn+ I ,p- I ) O> + O( hP 2). 

[This assumes that y is a scalar but the argument can be extended to the vector case.] 
If we control the step length, h, by an estimate of 

Yn+ I,p Yn+ I,p- I = h P p f 

this corresponds to controlling the error in yn+,p per unit step; c.f. [24]. The 
procedure which we now use to adjust the step is as follows. Assuming that a local 
error tolerance, Tol, is specified and that an error estimate Ei is obtained at n + i, 
i E [1, p], the step h1 used to compute forward from n + p is (assuming Ei +E1 - 

EiII < Tol, for alli E [1, p - .1), 

(3.4) hi = SF * h * (Tol/IIAEiI)'/Pl, E - max l1?Ei+I -Eiji, 

where 1I I* is some convenient vector norm and SF is a safety factor. If 11 E 11 > Tol, 
the current block is abandoned and the integration is restarted from the point xn 
using a step h, given by (3.4). In our practical experiments we took 11 as the 
maximum norm, and if II E II < Tol, we performed local extrapolation. A procedure 
whereby local extrapolation is always performed may not be the most efficient, 
especially for low accuracy requirements, but it is a convenient procedure for 
allowing us to compare our block formulae with more conventional formulae. 

The second problem which we consider is that of computing a solution at an 
"off-step" point. If we denote by Gn the set of points to be used by the integration 
formula and by Sn the set of points at which output is required, the normal 
procedure is to adjust h so that Sn C Gn. However, this procedure can be very 
wasteful especially if Sn contains many points some of which are closely spaced (see, 
for example, [23]). This output problem is not experienced by linear multistep 
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methods since they compute intermediate solutions essentially by evaluating an 
interpolating polynomial passing through already computed solutions. Interpolation 
can also be used with block Runge-Kutta formulae to compute intermediate solu- 
tions. Having completed a block of p integration steps, we have p + 1 solutions 
yny Y?1+ . - ynp available. If we now fit a pth order interpolating polynomial Ph(x) 
through the points (xi, yi), i = n, n + 1,. . . ,n + p, we can compute a pth order 
solutiony, at any intermediate point x, asy, = Ph(x,). 

Finally, in this section, we consider an algorithm for changing the order of our 
block implicit Runge-Kutta formulae. Comparison of codes by various workers have 
shown that in some situations Runge-Kutta formulae are very valuable, especially 
when function evaluations are inexpensive or when a problem has a number of 
discontinuities which require 'restarts', if some care is taken to choose the correct 
order initially and if the possibility of changing order is monitored as the integration 
proceeds. In what follows we describe an algorithm which allows us to achieve this 
aim. The algorithm which we describe has proved to be reasonably successful in 
practice, but it cannot hope to be as good as order changing algorithms for linear 
multistep methods. The reason for this is that successful codes based on linear 
multistep methods are able to compute an estimate of the error which would have 
been committed if a formula of degree one higher than the current one had been 
used, without actually having to compute the higher order solution (cf. [10], [13], 
[24]). They are able to do this because the form of the local truncation error 
associated with linear multistep methods is particularly simple. However, this facility 
does not seem possible with Runge-Kutta formulae, and the problem of when to 
increase order is a stumbling block. The procedure which we use is an extension of 
one given by Cash and Liem [5] for DIRK formulae. The first thing we need to do is 
to work out the order of the formula we expect to use. As a result of extensive 
numerical experiments we have found that in the range 10- 1 to 10-9 we expect to 
use the following order formulae: 

10-1,2; 10-2,2; 10-, 3; 10-4,3; 10-5 -10-9,4. 
Now, initially, we can choose the optimal formula to use by computing a fourth 
order solution with step h together with the embedded 3rd, 2nd and 1st order 
solutions. From this we can compute 

Ei = estimated error per unit step in the ith order 
solution i = 2, 3, 4 

and 

hi = h X SF X ((Tol/Ei)) /i as the next step which could 

be attempted. 

Clearly if SF is taken too large it will result in inefficiency because of many rejected 
steps, and if SF is too small, inefficiency will occur as a result of the step being too 
far from optimum. Numerical experiment showed that a suitable choice for SF was 
SF = 0.8 for order 2, 3 and SF = 0.9 for order 4. Having calculated hi, we can 
compute 

w2 = 2 X h2/3, w3 = 3 X h3/6 and w4 = 4 X h4/12. 
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The quantity wi measures the distance that can be integrated forward per function 
evaluation, and the order chosen is j where 

Wj = max w, 

We now have to deal with two possibilities: 
(a) If j is equal to or greater than the expected order, we integrate forward one 

block and then examine the possibility of reducing the order by computing the 
embedded solutions. We do not attempt to increase order. 

(b) If j is less than the expected order, we integrate forward one block and 
examine the possibility of reducing order. If our test tells us not to reduce order, we 
increase the order by 1 and then integrate another block forward. 

This process is carried out at the end of each block. Although this procedure is not 
ideal it has proved to be quite successful on the test problems which we have 
considered as the results of the next section show. 

4. Numerical Results. In this section we present some numerical results obtained 
using the block Runge-Kutta formulae developed in Section 2. There are three main 
points which we wish to make. First, we wish to show that block Runge-Kutta 
formulae are reliable for the integration of nonstiff problems. Secondly, we wish to 
show that fixed order block formulae are competitive with conventional Runge-Kutta 
formulae of the same order, and lastly we wish to show that our variable order 
algorithm is both efficient and reliable. The test problems considered are sets A, B, 
D and E given by Hull et al. [14], and these consist of twenty test problems. These 
problems were run for tolerances 10-', 10-', 10'5, 10'-, 10'-, and the results 
obtained are given in Tables 1-7. The table headings are self-explanatory except, 
perhaps, percent deceived which counts the number of accepted solutions with errors 
greater than the specified tolerance, and maximum error which gives the maximum 
absolute error as a fraction of the tolerance in an accepted solution. It can be seen 
from Tables 1-6 that the fixed order block schemes are generally more efficient than 
the fixed order Runge-Kutta formulae and are more reliable. Also the variable order 
formula performs well and is more reliable over all tolerances than any fixed order 
scheme. The step control for conventional R-K was performed as described in [14, p. 
622]. 

We finish with a few remarks regarding the implementation of our block for- 
mulae. First, we note that we have allowed the Runge-Kutta formulae to change 
step size at the end of each integration step, whereas block schemes can only change 
step size at the end of a block, unless the block is aborted. For the very inexpensive 
functions of the test set, step size changing may represent a considerable overhead, 
but this overhead is not listed in the Tables of results. Secondly, we have always 
insisted that a block formula completes one block step forward before computing 
error estimates. For the fourth order formula, for example, a bad step results in 12 
wasted function evaluations. It is possible to abort much earlier if things are going 
wrong, but we have not investigated this possibility. Finally, we note from the results 
that often we achieve more accuracy than is required especially with the fourth order 
formula. This indicates that more research into efficient control of step length for 
block formulae would be valuable. 
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TABLE 1 

Results for second order block formula for tolerances 10-1, - 

FCN CALLS No. of Steps Steps Max. Error 

deceived 

ClassA 1743 1112 4 1.15 
Class B 4245 2730 1 1.01 
Class D 6981 4556 5 1.19 
Class E 4566 2948 1 1.07 

TABLE 2 
Results for second order Runge-Kutta for tolerances 10- 1 10-3 

Class A 2228 1087 5 1.26 
Class B 5402 2668 6 1.12 
Class D 9306 4463 17 1.19 
Class E 5880 2909 1 1.10 

TABLE 3 
Results for third order Runge-Kutta for tolerances 10 10-3, 10-5 

Class A 3933 1239 2 1.55 
Class B 10629 3276 2 1.08 
Class D 18552 5511 0 0.96 
Class E 10512 3664 2 1.17 

TABLE 4 
Results for third order block formula for tolerances 10 l, 10-3, 10-5 

Class A 3180 1551 0 0.94 
Class B 7356 3522 0 0.91 
Class D 14834 7170 0 0.91 
Class E 7980 3822 0 0.86 
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